General and specific domain predictors and educational level in basic arithmetic in Chilean school children

Authors

DOI:

https://doi.org/10.21615/cesp.7570

Keywords:

Cognition, arithmetic, learning, formal education, working memory, mathematics skills, mathematic learning, mathematical achievement, school aged children

Abstract

Certain cognitive processes interact in the learning of arithmetic, as well as sociodemographic variables in the first years of formal education. In this context, the present study is aimed to analyze the specific contribution of the specific domains (symbolic and non-symbolic comparison) and the general domains (verbal and visuospatial working memory, attentional shifting, inhibitory control and fluid intelligence) in the resolution of a basic arithmetic task. This is a correlational and predictive study, whose sample corresponded to 203 participants with norm typical development, totalizing 94 girls and 109 boys. The results of the multiple linear regression with successive steps explained 30.4% of the variability in basis arithmetic where the symbolic comparison had greater predictive power, followed by attentional shifting. These findings highlight the importance of symbolic comparison and attentional shifting in explaining variability in basic arithmetic performance during the early years of formal education, an aspect that underlines the importance of early assessment of multiple cognitive components that have been shown to predict the acquisition of mathematical thinking, rather than focusing assessments solely on curriculum-based measures.

Downloads

Download data is not yet available.

Author Biographies

Tatiana Mazuera-Velásquez, Universidad de Concepción - Universidad de las Américas

PhD. in Psychology. Faculty of Health Sciences and Social Sciences, University of the Americas, Chile.

Gamal Cerda Etchepare, Universidad de Concepción

 PhD in Applied Psychology. Faculty of Education, University of Concepción, Chile.

Cesar Castillo-Concha, Universidad de las Américas

Master in Neurosciences of Education. Facultad de Ciencias de la Salud y Ciencias Sociales, Universidad de las Américas, Chile.

Danilka Castro, Universidad Mayor - Universidad de Chile

PhD. School of Psychology, Faculty of Medicine and Health Sciences, Universidad Mayor, Chile. Center for Advanced Research in Education, Institute of Advanced Studies, University of Chile.

References

Adams, A. M., Simmons, F., & Willis, C. (2015). Exploring relationships between working memory and writing: Individual differences associated with gender. Learning and Individual Differences, 40, 101-107. https://doi.org/10.1016/j.lindif.2015.04.011

Allen, K., Giofrè, D., Higgins, S., & Adams, J. (2020). Working memory predictors of written mathematics in 7-to 8-year-old children. Quarterly Journal of Experimental Psychology, 73(2), 239-248. https://doi.org/10.1177/1747021819871243

Alloway, T.P., Robinson, T., & Frankenstein, A.N. (2016). Educational Application of Working-Memory Training. In: Strobach, T., Karbach, J. (eds), Cognitive Training. Springer. https://doi.org/10.1007/978-3-319-42662-4_16

Aragón Mendizábal, E., & Navarro Guzmán, J. I. (2016). Exploring gender differences in general and specific-domain predictors of early mathematic skills. Suma Psicológica, 23(2), 71-79. https://doi.org/10.1016/j.sumpsi.2016.04.001

Aragón Mendizábal, E., Cerda Etchepare, G. A., Delgado Casas, C., Aguilar Villagrán, M., & Navarro Guzmán, J. I. (2019). Individual differences in general and specific cognitive precursors in early mathematical learning. Psicothema, 31(2), 156-162. https://doi.org/10.7334/psicothema2018.306

Aragón, E. L., Delgado, C. I., Aguilar, M., Araujo, A., & Navarro, J. I. (2013). Study of the influence of intelligence and gender in the assessment of early math. European journal of education and psychology, 6(1), 5-18. https://doi.org/10.30552/ejep.v6i1.90

Aragón, E., Canto-López, M. C., Aguilar, M., Menacho, I., & Navarro, J. I. (2023). Longitudinal study of symbolic and non-symbolic magnitude processing and its relationship with mathematical achievement. Revista de psicodidáctica, 28(1), 44-50. https://doi.org/10.1016/j.psicod.2022.07.003

Aragón, E., Cerda, G., Aguilar, M., Mera, C., & Navarro, J. I. (2021). Modulation of general and specific cognitive precursors to early mathematical competencies in preschool children. European Journal of Psychology of Education, 36(2), 405-422. https://doi.org/10.1007/s10212-020-00483-4

Aragón, E., Navarro, J. I., Aguilar, M., & Cerda, G. (2015). Predictores cognitivos del conocimiento numérico temprano en alumnado de 5 años. Revista de Psicodidáctica 20(1), 83-97. https://doi.org/10.1387/RevPsicodidact.11088

Aragón, E., Navarro, J.I., & Aguilar, M. (2016). Predictores de dominio específico para la fluidez de cálculo al inicio de la Educación Primaria. Revista Electrónica de Investigación en Psicología de la Educación, 14(40), 482-499. https://doi.org/10.25115/ejrep.40.15107

Ato, M., López-García, J. J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 29(3), 1038–1059. https://doi.org/10.6018/analesps.29.3.178511

Baddeley, A. (2003). Working memory and language: An overview. Journal of communication disorders, 36(3), 189-208. https://doi.org/10.1016/S0021-9924(03)00019-4

Bellon, E., Fias, W., & De Smedt, B. (2016). Are individual differences in arithmetic fact retrieval in children related to inhibition? Frontiers in Psychology, 7, 825. https://doi.org/10.3389/fpsyg.2016.00825

Bellon, E., Fias, W., & De Smedt, B. (2019). More than number sense: The additional role of executive functions and metacognition in arithmetic. Journal of experimental child psychology, 182, 38-60. https://doi.org/10.1016/j.jecp.2019.01.012

Berg, D. H. (2008). Working memory and arithmetic calculation in children: The contributory roles of processing speed, short-term memory, and reading. Journal of Experimental Child Psychology, 99, 288-308. https://doi.org/10.1016/j.jecp.2007.12.002

Brueggemann, A., & Gable, S. (2018). Preschoolers’ selective sustained attention and numeracy skills and knowledge. Journal of experimental child psychology, 171, 138-147. https://doi.org/10.1016/j.jecp.2018.02.001

Cai, D., Zhang, L., Li, Y., Wei, W., & Georgiou, G. K. (2018). The role of approximate number system in different mathematics skills across grades. Frontiers in Psychology, 9, 1733. https://doi.org/10.3389/fpsyg.2018.01733

Cantin, R. H., Gnaedinger, E. K., Gallaway, K. C., Hesson-McInnis, M. S., & Hund, A. M. (2016). Executive functioning predicts reading, mathematics, and theory of mind during the elementary years. Journal of experimental child psychology, 146, 66-78. https://doi.org/10.1016/j.jecp.2016.01.014

Cárdenas, M., & Arancibia, H. (2014). Potencia estadística y cálculo del tamaño del efecto en G* Power: complementos a las pruebas de significación estadística y su aplicación en psicología. Salud & Sociedad, 5(2), 210-224. https://doi.org/10.22199/S07187475.2014.0002.00006

Castro Cañizares, D., Kettlun Poblete, R., & Estévez Pérez, N. (2022). Contribution of attentional networks to basic arithmetic achievement in school-age children. Psicología Educativa, 28(2), 127 - 134. https://doi.org/10.5093/psed2021a20

Castro, D., Amor, V., Gómez, D. M., & Dartnell, P. (2017). Contribución de los componentes de la memoria de trabajo a la eficiencia en aritmética básica durante la edad escolar. Psykhe (Santiago), 26(2), 1-17. http://dx.doi.org/10.7764/psykhe.26.2.1141

Castro, D., Dartnell, P., & Pérez, N. E. (2021). Exploring basic numerical capacities in children with difficulties in simple arithmetical achievement. Suma Psicológica, 28(1), 1-9. https://doi.org/10.14349/sumapsi.2021.v28.n1.1

Castro, D., Estévez, N., Gómez, D., & Dartnell, P. R. (2017). Reliability and validity of nonsymbolic and symbolic comparison tasks in school-aged children. The Spanish Journal of Psychology, 20, E75. https://doi.org/10.1017/sjp.2017.68

Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1–22. https://doi.org/10.1037/h0046743

Caviola, S., Mammarella, I. C., Lucangeli, D., & Cornoldi, C. (2014). Working memory and domain-specific precursors predicting success in learning written subtraction problems. Learning and Individual Differences, 36, 92-100. https://doi.org/10.1016/j.lindif.2014.10.010

Cerda Etchepare, G. A., & Vera Sagredo, A. J. (2019). Rendimiento en matemáticas: rol de distintas variables cognitivas y emocionales: su efecto diferencial en función del sexo de los estudiantes en contextos vulnerables. Revista complutense de educación, 30(2), 331-346. https://doi.org/10.5209/RCED.57389

Cerda, G., Pérez, C., & Chandía, E. (2021). Precursores de dominio específico y general del pensamiento matemático informal en preescolares chilenos. Psychology, Society & Education, 13(3), 93-105. https://ojs.ual.es/ojs/index.php/psye/article/view/3430

Chacón-Candia, J.A., Lupiáñez J, Casagrande, M., & Marotta, A. (2020). Sex Differences in Attentional Selection Following Gaze and Arrow Cues. Frontiers in Psychology, 11, 95. https://doi.org/10.3389/fpsyg.2020.00095

Chu, F. W., VanMarle, K., & Geary, D. C. (2016). Predicting children's reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7, 775. https://doi.org/10.3389/fpsyg.2016.00775

Chu, F. W., vanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children's mathematical development. Journal of Experimental Child Psychology 132, 205–212. https://doi.org/10.1016/j.jecp.2015.01.006

Clark, C. A. C., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental Psychology, 46(5), 1176–1191. https://doi.org/10.1037/a0019672

Clements, D. H., Sarama, J., & Germeroth, C. (2016). Learning executive function and early mathematics: Directions of causal relations. Early Childhood Research Quarterly, 36, 79-90. https://doi.org/10.1016/j.ecresq.2015.12.009

Coolen, I., Merkley, R., Ansari, D., Dove, E., Dowker, A., Mills, A., Murphy, V., von Spreckelsen, M., Scerif, G., & Scerif, G. (2021). Domain-general and domain-specific influences on emerging numerical cognition: Contrasting uni-and bidirectional prediction models. Cognition, 215, 104816. https://doi.org/10.1016/j.cognition.2021.104816

Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in neuroscience and education, 3(2), 63-68. https://doi.org/10.1016/j.tine.2013.12.001

Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influences of executive functions on mathematics achievement. Cognition, 162, 12-26. https://doi.org/10.1016/j.cognition.2017.01.014

De Vita, C., Costa, H. M., Tomasetto, C., & Passolunghi, M. C. (2022). The contributions of working memory domains and processes to early mathematical knowledge between preschool and first grade. Psychological Research, 86(2), 497-511. https://doi.org/10.1007/s00426-021-01496-4

DeStefano, D., & LeFevre, J. A. (2004). The role of working memory in mental arithmetic. European Journal of Cognitive Psychology, 16(3), 353-386. https://doi.org/10.1080/09541440244000328

De Smedt, B., & Gilmore C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278–292. http://dx.doi.org/10.1016/j.jecp.2010.09.003

Devlin, B., Jordan, N., & Klein, A. (2022). Predicting mathematics achievement from subdomains of early number competence: Differences by grade and achievement level. Journal of Experimental Child Psychology, 217, 105354. https://doi.org/10.1016/j.jecp.2021.105354

Eriksen, A. D., Olsen, A., & Sigmundsson, H. (2023). Exploring the relationships between visuospatial working memory, math, letter-sound knowledge, motor competence, and gender in first grade children: A correlational study. Frontiers in Psychology, 13, 981915. https://doi.org/10.3389/fpsyg.2022.981915

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior research methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149

Floyd, R. G., Evans, J. J., & McGrew, K. S. (2003). Relations between measures of Cattell‐Horn‐Carroll (CHC) cognitive abilities and mathematics achievement across the school‐age years. Psychology in the Schools, 40(2), 155-171. https://doi.org/10.1002/pits.10083

Friso-Van den Bos, I., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational research review, 10, 29-44. https://doi.org/10.1016/j.edurev.2013.05.003

Fritz, A., Haase, V. G., & Rasanen, P. (2019). International handbook of mathematical learning difficulties. Springer. https://link.springer.com/book/10.1007/978-3-319-97148-3

Fung, W., & Swanson, H. L. (2017). Working memory components that predict word problem solving: Is it merely a function of reading, calculation, and fluid intelligence?. Memory & Cognition, 45, 804-823. https://doi.org/10.3758/s13421-017-0697-0

Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680. https://doi.org/10.1037/edu0000159

Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children’s arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological science, 25(3), 789-798. https://doi.org/10.1177/0956797613516471

Gloor, N., Leuenberger, D., & Moser Opitz, E. (2021). Disentangling the Effects of SFON (Spontaneous Focusing on Numerosity) and Symbolic Number Skills on the Mathematical Achievement of First Graders. A Longitudinal Study. Frontiers in Education, 6, 629201. https://doi.org/10.3389/feduc.2021.629201

Gray, S. A., & Reeve, R. A. (2016). Number-specific and general cognitive markers of preschoolers’ math ability profiles. Journal of Experimental Child Psychology, 147, 1-21. https://doi.org/10.1016/j.jecp.2016.02.004

Green, C., Bunge, S. A., Chiongbian, V. B., Barrow, M., & Ferrer, E. (2017). Fluid reasoning predicts future mathematical performance among children and adolescents. Journal of Experimental Child Psychology, 157, 125-143. https://doi.org/10.1016/j.jecp.2016.12.005

Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: The contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 272. https://doi.org/10.3389/fpsyg.2014.00272

Hutchison, J., Lyons, I., & Ansari, D. (2019). More similar than different: gender differences in basic numeracy are the exception, not the rule. Child Development, 90, 2-39. https://doi.org/10.1111/cdev.13044

Jõgi, A. L., & Kikas, E. (2016). Calculation and word problem‐solving skills in primary grades–impact of cognitive abilities and longitudinal interrelations with task‐persistent behaviour. British Journal of Educational Psychology, 86(2), 165-181. https://doi.org/10.1111/bjep.12096

Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103, 546–565. http://dx.doi.org/10.1016/j.jecp.2008.12.006

Lau, N. T., Merkley, R., Tremblay, P., Zhang, S., De Jesus, S., & Ansari, D. (2021). Kindergarteners’ symbolic number abilities predict nonsymbolic number abilities and math achievement in grade 1. Developmental Psychology, 57(4), 471. https://doi.org/10.1037/dev0001158

Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematics achievement. PloS One, 8(7), e70160. https://doi.org/10.1371/journal.pone.0070160

Li, Y., Zhang, M., Chen, Y., Deng, Z., Zhu, X., & Yan, S. (2018). Children’s non-symbolic and symbolic numerical representations and their associations with mathematical ability. Frontiers in psychology, 9, 1035. https://doi.org/10.3389/fpsyg.2018.01035

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental science, 14(6), 1292-1300. https://doi.org/10.1111/j.1467-7687.2011.01080.x

Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental science, 17(5), 714-726. https://doi.org/10.1111/desc.12152

Magalhães, S., Carneiro, L., Limpo, T., & Filipe, M. (2020). Executive functions predict literacy and mathematics achievements: The unique contribution of cognitive flexibility in grades 2, 4, and 6. Child Neuropsychology, 26(7), 934–952. https://doi.org/10.1080/09297049.2020.1740188

Macchitella, L., Tosi, G., Romano, D. L., Iaia, M., Vizzi, F., Mammarella, I. C., & Angelelli, P. (2023). Visuo-Spatial Working Memory and Mathematical Skills in Children: A Network Analysis Study. Behavioral Sciences, 13(4), 294. https://doi.org/10.3390/bs13040294

Mammarella, I. C., Caviola, S., Giofré, D., & Szűcs, D. (2017). The underlying structure of visuospatial working memory in children with mathematical learning disability. British Journal of Developmental Psychology, 36(2), 220-235. https://doi.org/10.1111/bjdp.12202

McDonald, P. A., & Berg, D. H. (2018). Identifying the nature of impairments in executive functioning and working memory of children with severe difficulties in arithmetic. Child Neuropsychology, 24(8), 1047-1062. https://doi.org/10.1080/09297049.2017.1377694

McKown, C., & Weinstein, R. S. (2003). The development and consequences of stereotype consciousness in middle childhood. Child development, 74(2), 498-515. https://doi.org/10.1111/1467-8624.7402012

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior research methods, 44, 314-324. https://doi.org/10.3758/s13428-011-0168-7

Menón, V. (2016). Working memory in children's math learning and its disruption in dyscalculia. Current Opinion in Behavioral Sciences, 10, 125-132. https://doi.org/10.1016/j.cobeha.2016.05.014

Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14-20. https://doi.org/10.1016/j.cobeha.2016.04.006

Morgan, P. L., Farkas, G., Hillemeier, M. M., Pun, W. H., & Maczuga, S. (2019). Kindergarten children's executive functions predict their second‐grade academic achievement and behavior. Child development, 90(5), 1802-1816. https://doi.org/10.1111/cdev.13095

Mueller, S. T., & Esposito, A. G. (2014). Computerized testing software for assessing interference suppression in children and adults: the bivalent shape task (BST). Journal of open research software, 2(1), e3. https://doi.org/10.5334/jors.ak

Muñoz, P. F., Escobar, L. M., & Castelo, G. V. (2020). Robustez y potencia de la t-student para inferencia de una media ante la presencia de datos atípicos. Perfiles, 1(24), 4-11. https://ceaa.espoch.edu.ec/ojs/index.php/perfiles/article/view/70

Mussolin, Ch., Mejias, S., & Nöel, M-P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10–25. http://dx.doi.org/10.1016/j.cognition.2009.10.006

Neuville, E., & Croizet, J. C. (2007). ¿Can salience of gender identity impair math performance among 7–8 years old girls? The moderating role of task difficulty. European Journal of Psychology of Education, 22, 307-316. https://doi.org/10.1007/BF03173428

Passolunghi, M. C., & Costa, H. M. (2016). Working memory and early numeracy training in preschool children. Child Neuropsychology, 22(1), 81-98. https://doi.org/10.1080/09297049.2014.971726

Passolunghi, M. C., & Costa, H. M. (2019). Working memory and mathematical learning. In Fritz, A., Geraldi, V., & Räsänen, P. (Eds). International Handbook of Mathematical Learning Difficulties: From the Laboratory to the Classroom (407-421), Springer. https://doi.org/10.1007/978-3-319-97148-3_25

Passolunghi, M. C., Cargnelutti, E., & Pellizzoni, S. (2019). The relation between cognitive and emotional factors and arithmetic problem-solving. Educational Studies in Mathematics, 100, 271-290. https://doi.org/10.1007/s10649-018-9863-y

Passolunghi, M. C., De Blas, G. D., Carretti, B., Gomez-Veiga, I., Doz, E., & Garcia-Madruga, J. A. (2022). The role of working memory updating, inhibition, fluid intelligence, and reading comprehension in explaining differences between consistent and inconsistent arithmetic word-problem-solving performance. Journal of Experimental Child Psychology, 224, 105512. https://doi.org/10.1016/j.jecp.2022.105512

Passolunghi, M. C., Lanfranchi, S., Altoè, G., & Sollazzo, N. (2015). Early numerical abilities and cognitive skills in kindergarten children. Journal of Experimental Child Psychology, 135, 25-42. https://doi.org/10.1016/j.jecp.2015.02.001

Paz-Baruch, N. (2022). The role of gender and cognitive mechanisms in mathematical and reading performance. Educational Studies, 1-18 (Epub ahead of print). https://doi.org/10.1080/03055698.2022.2091406

Pelegrina, S., Lechuga, M. T., García-Madruga, J. A., Elosúa, M. R., Macizo, P., Carreiras, M., Fuentes, L.J., & Bajo, M. T. (2015). Normative data on the n-back task for children and young adolescents. Frontiers in psychology, 6, 1544. https://doi.org/10.3389/fpsyg.2015.01544

Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455. https://doi.org/10.1037/edu0000079

Peng, P., Wang, T., Wang, C., & Lin, X. (2019). A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin, 145(2), 189. https://doi.org/10.1037/bul0000182

Pina, V., Martella, D., Chacón-Moscoso, S., Saracostti, M., & Fenollar-Cortés, J. (2021). Gender-based performance in mathematical facts and calculations in two elementary gschool samples from Chile and Spain: An exploratory study. Frontiers in Psychology, 12, 703580. https://doi.org/10.3389/fpsyg.2021.703580

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and individual differences, 20(2), 110-122. https://doi.org/10.1016/j.lindif.2009.10.005

Räsänen, P., Aunio, P., Laine, A., Hakkarainen, A., Väisänen, E., Finell, J., ... & Korhonen, J. (2021, July). Effects of gender on basic numerical and arithmetic skills: Pilot data from third to ninth grade for a large-scale online dyscalculia screener. Frontiers in education, 6, 683672). https://doi.org/10.3389/feduc.2021.683672

Raven, J. (2003). Raven progressive matrices. In Handbook of nonverbal assessment (pp. 223-237). Springer US.

Rosas, R., Pizarro, M., Grez, O., Navarro, V., Tapia, D., Arancibia, S., Muñoz-Quezada, M. T., Lucero, B., Pérez-Salas, C. P., Oliva, K., Vizcarra, B., Rodríguez-Cancino, M., & von Fredeen, P. (2022). Estandarización Chilena de la Escala Wechsler de Inteligencia para Niños - Quinta Edición. Psykhe, 31(1), 1-23. https://doi.org/10.7764/psykhe.2020.21793

Rousselle, L., & Nöel, M. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102, 361–395. http://dx.doi.org/10.1016/j.cognition.2006.01.005

Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement?. Journal of experimental child psychology, 114(3), 418-431. https://doi.org/10.1016/j.jecp.2012.10.012

Scheiber, C, Reynolds, M. R., Hajovsky, D. B., & Kaufman, A.S. (2015). Gender differences in achievement in a large, nationally representative sample of children and adolescents. Psychol. Schools, 52, 335–348. https://doi.org/10.1002/pits.21827

Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non‐symbolic and symbolic numerical magnitude processing with mathematical competence: A meta‐analysis. Developmental science, 20(3), e12372. https://doi.org/10.1111/desc.12372

Skagerlund, K., & Träff, U. (2016). Processing of space, time, and number contributes to mathematical abilities above and beyond domain-general cognitive abilities. Journal of Experimental Child Psychology, 143, 85–101. https://doi.org/10.1016/j.jecp.2015.10.016

Stoet, G. (2017). Sex differences in the Simon task help to interpret sex differences in selective attention Psychological Research, 81, 571-581, https://doi.org/10.1007/s00426-016-0763-4

Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive components of a mathematical processing network in 9‐year‐old children. Developmental science, 17(4), 506-524. https://doi.org/10.1111/desc.12144

Toll, S. W., Van Viersen, S., Kroesbergen, E. H., & Van Luit, J. E. (2015). The development of (non-) symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differences, 38, 10-17. https://doi.org/10.1016/j.lindif.2014.12.006

U., Olsson, L., Östergren, R., & Skagerlund, K. (2020). Development of early domain-specific and domain-general cognitive precursors of high and low math achievers in grade 6. Child Neuropsychology, 26(8), 1065-1090. https://doi.org/10.1080/09297049.2020.1739259

Traverso, L., Tonizzi, I., Usai, M. C., & Viterbori, P. (2021). The relationship of working memory and inhibition with different number knowledge skills in preschool children. Journal of experimental child psychology, 203, 105014. https://doi.org/10.1016/j.jecp.2020.105014

Van de Weijer-Bergsma, E., Kroesbergen, E. H., & Van Luit, J. E. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory & cognition, 43, 367-378. https://doi.org/10.3758/s13421-014-0480-4

Van der Sluis, S., De Jong, P. F., & Van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35(5), 427-449. https://doi.org/10.1016/j.intell.2006.09.001

Van Tetering, M., Van der Donk, M., De Groot, R. H. M., & Jolles, J. (2019). Sex differences in the performance of 7–12 year olds on a mental rotation task and the relation with arithmetic performance. Frontiers in Psychology, 10, 107. https://doi.org/10.3389/fpsyg.2019.00107

Vernucci, S., Canet-Juric, L., Andrés, M. L., & Burin, D. I. (2017). Comprensión lectora y cálculo matemático: El rol de la memoria de trabajo en niños de edad escolar. Psykhe, 26(2), 1-13. http://dx.doi.org/10.7764/psykhe.26.2.1047

Willcutt, E. G., Petrill, S. A., Wu, S., Boada, R., DeFries, J. C., Olson, R. K., & Pennington, B. F. (2013). Comorbidity between reading disability and math disability: Concurrent psychopathology, functional impairment, and neuropsychological functioning. Journal of learning disabilities, 46(6), 500-516. https://doi.org/10.1177/0022219413477476

Wei, W., Li, Y., & Su, H. Y. (2020). Predicting the growth patterns in early mathematics achievement from cognitive and environmental factors among Chinese kindergarten children. Learning and Individual Differences, 79, 101841. https://doi.org/10.1016/j.lindif.2020.101841

Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2016). The relation between ANS and symbolic arithmetic skills: The mediating role of number-numerosity mappings. Contemporary Educational Psychology, 46, 208-217. https://doi.org/10.1016/j.cedpsych.2016.06.003

Xenidou‐Dervou, I., Van Luit, J. E., Kroesbergen, E. H., Friso‐van den Bos, I., Jonkman, L. M., van der Schoot, M., & Van Lieshout, E. C. (2018). Cognitive predictors of children's development in mathematics achievement: A latent growth modeling approach. Developmental Science, 21(6), e12671. https://doi.org/10.1111/desc.12671

Xenidou-Dervou, I., Molenaar, D., Ansari, D., van der Schoot, M., & van Lieshout, E. C. (2017). Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning and Instruction, 50, 1-13. https://doi.org/10.1016/j.learninstruc.2016.11.001

Yeniad, N., Malda, M., Mesman, J., Van IJzendoorn, M. H., & Pieper, S. (2013). Shifting ability predicts math and reading performance in children: A meta-analytical study. Learning and Individual Differences, 23, 1-9. https://doi.org/10.1016/j.lindif.2012.10.004

Zhong, Z., Xu, Y., Jin, R., Ye, C., Zhang, M., & Zhang, H. (2022). Executive functions and mathematical competence in Chinese preschool children: A meta-analysis and review. Frontiers in psychology, 13, 1012660. https://doi.org/10.3389/fpsyg.2022.1012660

Zhu, M., Cai, D., & Leung, A. W. (2017). Number line estimation predicts mathematical skills: Difference in grades 2 and 4. Frontiers in Psychology, 8, 1576. https://doi.org/10.3389/fpsyg.2017.01576

Published

2025-01-24

How to Cite

Mazuera-Velásquez, T., Cerda Etchepare, G., Castillo-Concha, C., & Castro, D. (2025). General and specific domain predictors and educational level in basic arithmetic in Chilean school children. Revista CES Psicología, 18(1), 18–34. https://doi.org/10.21615/cesp.7570

Issue

Section

Artículos Originales
QR Code
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo

Altmetric

Some similar items: