The role of microRNAs in the pathogenesis of prostate cancer
DOI:
https://doi.org/10.21615/cesmedicina.35.1.3Keywords:
Prostate cancer, Biomarkers, Genetic therapy, MicroRNAsAbstract
Prostate cancer is a prevalent disease, with great morbidity and mortality, reported as the fifth leading cause of death worldwide. According to estimates for 2018 by GLOBOCAN (Global Cancer Observatory), 1 276 106 new cases of prostate cancer were reported worldwide. Identifying methods that allow an early diagnosis and treatment of the disease is necessary. MicroRNA are a possible future strategy as biomarkers for prostate cancer. These are small RNA molecules, in charge of regulating genetic expression. Their differential expression is relevant in the pathogenesis of prostate cancer. Currently, literature suggests the differential expression of these biological molecules could be a tool in prostate cancer, with clinical utility. In Colombia new research related to microRNA and prostate cancer is being conducted, which justifies the pertinence of this literature review and the contribution it can have on future research.
Downloads
References
Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019; 10(2):63-89.
Ministerio de Salud y Protección Social. Análisis de Situación de Salud (ASIS) Colombia, [en línea] 2020. [citada 2020 junio 2]. Hallado URL: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/asis-2019-colombia.pdf
Jackson BL, Grabowska A, Ratan H.L. MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers. BMC Cancer. 2014; 14:930.
Movahedpour A, Ahmadi N, Ghasemi Y, Savardashtaki A, Shabaninejad Z. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in prostate cancer: Current status and future perspectives. J Cell Biochem. 2019; 120 (10): 16316-16329.
Santos PB, Patel H, Henrique R, Félix A. Can epigenetic and inflammatory biomarkers identify clinically aggressive prostate cancer? World J Clin Oncol. 2020; 11(2): 43–52.
Jin W, Fei X, Wang X, Song Y, Chen F. Detection and prognosis of prostate cancer using blood-based biomarkers. Mediators Inflamm 2020; 2020: 8730608.
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie. 2019; 167:12
Wei J, Yin Y, Deng Q, Zhou J, Wang Y, Yin G, et al. Integrative Analysis of MicroRNA and Gene Interactions for Revealing Candidate Signatures in Prostate Cancer. Front Genet. 2020; 11: 176.
Matin F, Jeet V, Clements JA, Yousef GM, Batra J. MicroRNA theranostics in prostate cancer precision medicine. Clin Chem. 2016; 62(10):1318-1333.
Yan JW, Lin JS, He XX. The emerging role of miR‐375 in cancer. Int. J. Cancer. 2014; 135: 1011-1018.
Pinzón CE, Serrano ML, Sanabria MC. Papel de la vía fosfatidilinositol 3 kinasa (PI3K/Akt) en humanos. Revista Ciencias de la Salud. 2009. 7(2).
Jia Y, Gao Y, Dou J. Effects of miR-129-3p on biological functions of prostate cancer cells through targeted regulation of Smad3. Oncol Lett. 2020; 19(2):1195–1202.
Shankar E, Weis MC, Avva J, Shukla S, Shukla M, Sreenath SN, et al. Complex systems biology approach in connecting PI3K-Akt and NF-κB pathways in prostate cancer. Cells. 2019; 8(3):201.
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Molecular Cancer. 2019; 26 (18).
Zheng XM, Zhang P, Liu MH, Chen P, Zhang WB. MicroRNA-30e inhibits adhesion, migration, invasion and cell cycle progression of prostate cancer cells via inhibition of the activation of the MAPK signaling pathway by downregulating CHRM3. Int J Oncol. 2019; 54(2):443-454.
Gao S, Zhao Z, Wu R, Wu L, Tian X, Zhang Z. MiR-1 inhibits prostate cancer PC3 cells proliferation through the Akt/mTOR signaling pathway by binding to c-Met. Biomed Pharmacother. 2019; 109:1406-1410.
Zhang Y, Zhang D, Lv J, Wang S, Zhang Q. miR-410-3p promotes prostate cancer progression via regulating PTEN/AKT/mTOR signaling pathway. Biochem Biophys Res Commun. 2018; 503(4):2459-2465.
Tripathi V, Popescu N, Zimonjic, D. DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene. 2014; 33:724–733.
Tao Z, Xu S, Ruan H, Wang T, Song W, Qian L, Chen K: MiR-195/-16 Family Enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 Immune checkpoint. Cell Physiol Biochem. 2018; 48:801-814.
Huang CF, Lira C, Chu K, Bilen MA, Lee YC, Ye X, Kim SM, Ortiz A, Wu FL, Logothetis CJ, Yu-Lee LY, Lin SH. Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res. 2010; 70(11):4580-4589.
Wang N, Li Q, Feng NH, Cheng G, Guan ZL, Wang Y, Qin C, Yin CJ, Hua LX. miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth. Asian J Androl. 2013; 15(6):735-741.
Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 Induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLOS ONE. 2011; 6(4): e19139.
Kasomva K, Sen A, Paulraj MG, Sailo S, Raphael V, Puro K u, et al. Roles of microRNA in prostate cancer cell metabolism. Int J Biochem Cell Biol. 2018; 102:109-116.
Barach YS, Lee JS, Zang X. T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics. Trends Mol Med. 2011; 17(1):47-55.
Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, et al. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst. 2015; 108(1):djv303.
Pesta M, Klecka J, Kulda V, Topolcan O, Hora M, Eret M, et al. Importance of miR-20a expression in prostate cancer tissue. Anticancer Res. 2010; 30(9):3579-3583.
Bidarra D, Constâncio V, Barros-Silva D, Ramalho-Carvalho J, Moreira-Barbosa C, Antunes A, et al. Circulating microRNAs as biomarkers for prostate cancer detection and metastasis development prediction. Front Oncol. 2019; 9:900.
Vanacore D, Boccellino M, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, et al. Micrornas in prostate cancer: an overview. Oncotarget. 2017; 8(30):50240-50251.
Guo X, Han T, Hu P, Guo X, Zhu C, Wang Y, et al. Five microRNAs in serum as potential biomarkers for prostate cancer risk assessment and therapeutic intervention. Int Urol Nephrol. 2018; 50(12):2193-2200.
Lyu J, Zhao L, Wang F, Ji J, Cao Z, Xu H, Shi X, Zhu Y, Zhang C, Guo F, Yang B, Sun Y. Discovery and Validation of Serum MicroRNAs as Early Diagnostic Biomarkers for Prostate Cancer in Chinese Population. Biomed Res Int. 2019 Aug 25;2019:9306803. doi: 10.1155/2019/9306803.
Jin W, Fei X, Wang X, Chen F, Song Y. Circulating miRNAs as biomarkers for prostate cancer diagnosis in subjects with benign prostatic hyperplasia. J Immunol Res. 2020; 2020:5873056.
Farran B, Dyson G, Craig D, Dombkoski A, Beebe-Dimmer JL, Powell IJ, et al. A study of circulating microRNAs identifies a new potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis. 2018; 39(4):556-561.
Shukla KK, Misra S, Pareek P, Mishra V, Singhal B, Sharma P, et al. Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer. Urologic Oncology. 2017; 35(3):92-101.
Wang Y, Lieberman R, Pan J, Zhang Q, Du M, Zhang P, et al. miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Mol Cancer. 2016; 15(1):70.
Mao A, Zhao Q, Zhou X, Sun C, Si J, Zhou R, et al. MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells. Sci Rep. 2016; 6:27346.
Thieu W, Tilki D, de Vere White R, Evans CP. The role of microRNA in castration-resistant prostate cancer. Urol Oncol. 2014; 32(5):517-523.
Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 2010; 1(12):e105.
Nagesh PKB, Chowdhury P, Hatami E, Boya VKN, Kashyap VK, Khan S, et al. miRNA-205 Nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers (Basel). 2018; 10(9):289.
Ni J, Bucci J, Chang L, Malouf D, Graham P, Li Y. Targeting MicroRNAs in prostate cancer radiotherapy. Theranostics. 2017; 7(13):3243-3259.
Li B, Shi XB, Nori D, Chao CK, Chen AM, Valicenti R, White Rde V. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate. 2011 May;71(6):567-74. doi: 10.1002/pros.21272.
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA therapeutics in cancer - an emerging concept. EBioMedicine. 2016;12:34-42.
Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. 2010;397(8):3173-3178.
Ekin A, Karatas OF, Culha M, Ozen M. Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. J Gene Med. 2014, 16(11-12):331-5.
Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 2019;30(2):114-127.
Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, Shin S, Becerra CR, Falchook G, Stoudemire J, Martin D, Kelnar K, Peltier H, Bonato V, Bader AG, Smith S, Kim S, O'Neill V, Beg MS. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630-1637. doi: 10.1038/s41416-020-0802-1.
Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res. 2020; 28:127-138.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 CES Medicina

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Derechos de reproducción (copyright)
Cada manuscrito se acompañará de una declaración en la que se especifique que los materiales son inéditos, que no han sido publicados anteriormente en formato impreso o electrónico y que no se presentarán a ningún otro medio antes de conocer la decisión de la revista. En todo caso, cualquier publicación anterior, sea en forma impresa o electrónica, deberá darse a conocer a la redacción por escrito.
Plagios, duplicaciones totales o parciales, traduccones del original a otro idioma son de responsabilidad exclusiva de los autores el envío.
Los autores adjuntarán una declaración firmada indicando que, si el manuscrito se acepta para su publicación, los derechos de reproducción son propiedad exclusiva de la Revista CES Medicina.
Se solicita a los autores que proporcionen la información completa acerca de cualquier beca o subvención recibida de una entidad comercial u otro grupo con intereses privados, u otro organismo, para costear parcial o totalmente el trabajo en que se basa el artículo.
Los autores tienen la responsabilidad de obtener los permisos necesarios para reproducir cualquier material protegido por derechos de reproducción. El manuscrito se acompañará de la carta original que otorgue ese permiso y en ella debe especificarse con exactitud el número del cuadro o figura o el texto exacto que se citará y cómo se usará, así como la referencia bibliográfica completa.
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |